补体(complement,C)是存在于人和脊椎动物血清及组织液中的一组具有酶样活性的球蛋白,加上其调节因子和相关膜蛋白共同组成一个反应系统枣补体系统。补体系统参与机体的抗感染及免疫调节,也可介导病理性反应,是体内重要的免疫效应系统和放大系统。
(一)补体系统的组分及命名
补体系统包括30余种活性成分,按其性质和功能可以分为三大类:①在体液中参与补体活化级联反应的各种固有成分;②以可溶性形式或膜结合形式存在的各种补体调节蛋白;③结合补体片段或调节补体生物效应的各种受体。
1968年WHO命名委员会对补体系统进行了统一命名。参与补体激活经典途径的固有成分按其被发现的先后顺序分别称为C1、C2、……C9,C1由C1q、C1r、C1s三种亚单位组成;补体系统的其他成分以英文大写字母表示,如B因子、D因子、P因子、H因子等;补体调节成分多以其功能进行命名,如C1抑制物、C4结合蛋白、衰变加速因子等;补体活化后的裂解片段以该成分的符号后面加小写英文字母表示,如C3a、C3b等;具有酶活性成分或复合物在其符号上划一横线表示,如C1、C3bBb等;灭活的补体片段在其符号前面加英文字母i表示,如iC3b等。
(二)补体组分的理化性质
补体的大多数组分都是糖蛋白,且多属于β球蛋白;C1q、C8等为γ球蛋白,C1s、C9为α球蛋白。正常血清中各组成分的含量相差较大,C3含量最多,C2最低。各种属动物间血中补体含量也不相同,豚鼠血情中含有丰富的补体,故实验室多采用豚鼠血作为补体来源。
补体性质不稳定,易受各种理化因素影响,例如加热65℃30min即被灭活。另外紫外线照射、机械振荡或某些添加剂等理化因素均可能破坏补体。所以补体活性检测标本应尽快地进行测定,以免补体失活。补体系统各组成分的主要理化性质见表3-1。
表3-1 补体成分及其主要理化性质
分子量(kD) | 血清浓度(μg/ml) | 电泳位置 | 肽链数目 | |
经典途径成分 | ||||
C1q | 410 | 75 | γ | 18 |
C1r | 85 | 50 | β | 1 |
C1s | 85 | 50 | α2 | 1 |
C4 | 210 | 200~500 | β1 | 3 |
C2 | 110 | 20 | β1 | 1 |
C3 | 195 | 550~1200 | β1 | 2 |
C5 | 19 | 70 | β1 | 2 |
C6 | 128 | 60 | β2 | 2 |
C7 | 121 | 60 | β2 | 1 |
C8 | 155 | 60 | γ | 1 |
C9 | 79 | 60 | α | 1 |
替代途径成分 | ||||
B因子 | 93 | 200 | β1 | 1 |
D因子 | 25 | 1~2 | α | 1 |
备解素 | 220 | 25 | γ | 1 |
可溶性调节蛋白 | ||||
C1抑制物 | 104 | 200 | α2 | 1 |
I因子 | 88 | 35 | β | 2 |
H因子 | 150 | 480 | β | 1 |
S蛋白 | 8.3 | 505 | β | 1 |
Sp40/40 | 0.08 | 50 | α | 2 |
C4结合蛋白(C4Bp) | 550 | 250 | γ | 8或10 |
过敏毒素灭活因子 | 300 | α | ||
膜结合调节蛋白 | ||||
促衰变因子(DAF) | 70 | 1 | ||
膜辅助蛋白(MCP) | 45~70 | 1 | ||
同种限制因子 | 65 | |||
膜反应溶解抑制因子 | 18 |
(三)补体成分的分子结构
1.C1 是由C1q、C1r、C1s三个糖蛋白亚单位组成,有Ca2+存在时形成巨分子复合体,病理状态下可有单体形式存在。C1q是补体成分中最大的分子,分子量为410kD,化学组成为胶原蛋白,由18条多肽链组成,肽链间借二硫键相连接,多肽链的末端呈球形,每3条不同的多肽链(α,β,γ)组合在一起形成6个亚单位,可与6个IgG分子结合,其结合部位在球状的头部(图3-1)。
图3-1 C1分子模式图
C1r是一种β球蛋白,正常时以无活性的酶原样形式存在,有二条相同的非共价键连接的多肽链,C1r常与C1s紧密相联在一起,同时C1r还是C1q和C1s的联桥。C1s是一种α2球蛋白,单链,可被C1r激活,C1s具有酶样活性,在Mg2+存在时激活C4和C2。
2.C4 是一种β球蛋白,由3条多肽链组成(α,β,γ),分子量分别是95kD、78kD和33kD。C1s可将3条链中最大的α链裂解,释放出一较小的多肽C4a,余下的大部分结合在靶细胞上,进行补体的下一步活化程序。
3.C2 是一种β球蛋白,单链,是血清中含量最少的补体成分。激活的C2极不稳定,易衰变,形成补体系统中的一种自身调节机制,以控制补体的激活过程。
4.C3 是一种β球蛋白,由α和β两条多肽链组成(图3-2),分子量分别是110kD和75kD。α链有998个氨基酸残基,β链有669个氨基酸残基;两链间以氢键、疏水键及二硫键相连,相互平行。α链参与C3活化,链的第77位精氨酸和78位丝氨酸之间的肽键是C3裂解酶的作用部位。C3裂解后产生小片段C3a和大片段C3b;C3b受H因子、I因子和CR1的协同作用降解为无活性的iC3b;iC3b可以被水解为C3c和C3dg,C3dg还可被进一步降解成C3d和C3g。
图3-2 C3分子及其裂解产物示意图
C3呈多样性,有30多种异构型。完整的C3分子含糖约2.2%,主要是甘露糖和岩藻糖。C3在血清中含量甚高,可达550~120μg/ml。C3是补体系统中起关键作用的一种成分,所有的补体激活途径均需C3的参与。
5.C5 是一种β球蛋白,由2条多肽链组成,与C3相似。α链被裂解后游离出一小分子具有特殊生物活性的C3a,其余大部分片段C5b参与后续的补体活化。
(四)补体的细胞受体
补体受体(complement receptor,CR)是细胞膜上能与补体成分或补体片段特异性结合的一种表面糖蛋白。许多类型的细胞膜上都具有补体受体,而且在同一细胞膜上可含有不同的受体。现将已发现的几种主要补体受体作简单介绍。
1.C1q受体 在中性粒细胞、单核细胞、多数B细胞等一些细胞的表面发现有C1q受体,该受体不与完整C1分子中的C1q相互作用,但C1被C1NH解离后则可结合C1q。受体在结合C1q后可活化各种细胞的相应功能,例如氧化代谢、吞噬功能及某些抗体非依赖性的细胞毒作用等。
2.C3受体 研究最多的是C3系列片段受体,最先命名的CR1~CR4都是C3片段的受体(表3-2)。这些受体不能识别循环中的C3分子,只选择性地结合C3裂解后的片段;而且这种结合作用不能被正常血浆蛋白所封闭。不同片段的受体分布于不同类型的细胞,以CR1(C3b受体)的分布较广,可发现在人类红细胞、中性粒细胞、单核-巨噬细胞和B细胞上;CR2(C3d受体)只表达在淋巴母细胞及淋巴细胞上;而CR3(iC3b受体)只表达在吞噬细胞上。
如果C3片段结合在抗原抗体复合物上,则C3受体就是抗原与细胞结合的桥梁;如果结合到吞噬细胞表面,则将促进吞噬细胞对抗原的吞噬,故CR1和CR3均是吞噬过程中的重要物质。同时,CR1和CR2均是血清酶I因子裂解C3片段的协同因子;CR3和CR4还是整合素(integrin)家族的成员,在细胞吸附过程中具有重要作用;CR3缺乏患者血中的吞噬细胞的吸附和吞噬功能明显异常,经常性软组织及皮肤感染,特别是链球菌和铜绿假单胞菌感染。
表3-2 C3片段的细胞受体
受体 | 蛋白结构 | 结合片段 | 分布细胞 | 主要功能 |
CR1 | 单链15~40kD | C4b/C3b iC3b | 红细胞,吞噬细胞,嗜酸性粒细胞等 | 促吞噬作用,辅助裂解C3b成C3dg |
CR2 | 单链140kD | C3d | B细胞,少数其他淋巴细胞 | B细胞分化,EB病毒受体 |
CR3 | 双链265kD | iC3d | 吞噬细胞 | 促吞噬,辅助C3bi降解 |
CR4 | 双链254kD | iC3b,C3d | 枯否细胞,其他吞噬细胞 | 不详 |
C3aR | ? | C3a,C4a | MN,T-C,平骨肌,肥大细胞单核细胞等 | 免疫调节,过敏毒素 |
C3eR | ? | C3e | 中性粒细胞 | 引起骨髓中PMNS释放 |
补体的可溶性调节蛋白和细胞膜相关蛋白是补体系统的重要组成部分,其主要成分的理化性质见表3-1;对补体活化的调节作用见表3-3。
补体系统的各组分在体液中通常以非活性状态、类似酶原的形式存在,当受到一定因素激活,才表现出生物活性。补体的激活途径主要有两种,即经典途径(claasicalpathway)和替代途径(alternativepathway)。
(一)经典途径
经典途径是以结合抗原后的IgG或IgM类抗体为主要激活剂,补体C1~C9共11种成分全部参与的激活途径。现发现除抗原抗体复合物外,还有许多因子可激活此途径,如非特异性凝集的Ig、细菌脂多糖、一些RNA肿瘤病毒、双链DNA、胰蛋白酶、纤溶酶、尿酸盐结晶、C-反应蛋白等。经典活化途径可人为地分成识别、活化和膜攻击3个阶段。
1.识别阶段在抗体结合抗原形成复合物后,与C1q结合。IgG1、IgG2、IgG3的补体结合位点在CH2区内,而IgM补体结合位点在CH3区内,IgG4、IgA、IgD和IgE不能结合补体。电镜下观察发现,C1q的球形结构与抗体结合后,进一步激活C1r和C1s,C1s具有酯酶活性,继之进入下一步的连续反应(图3-3)。研究还发现激活C1q的球形分子必须具有2个以上紧密相邻的IgG分子,IgM只需1分子即可,故单分子IgM比IgG激活补体的能力大得多,在补体介导的抗体溶细胞反应中,同量的IgM比IgG更有效。
2.活化阶段此阶段主要形成2种重要的转化酶:C3转化酶C4b3b和C5转化酶C4b2b3b。C4和C2均为C1酯酶的天然底物,C1使C4裂解成C4b和游离的C4a两个片段。C4bα链断端上暴露的硫酯键高度不稳定,可与细胞表面的蛋白质或糖形成共价酰胺键或酯键,在Mg2+存在时C1和C4b一起将C2裂解成大片段C2b和游离的小片段C2a。C2b和C4b结合可形成C4b2b(C3转化酶),将C3裂解成大片段C3b和游离的小片段C3a。继而C3b结合至C4b2b附着的邻近细胞膜上,形成C4b2b3b三分子复合物,即C5转化酶。
3.膜攻击阶段此期形成膜攻击复合物(membraneattackcomplex,MAC)使靶细胞溶解。C5转化酶将C5裂解为C5b和游离的小分子C5a,C5b与细胞膜结合,继而结合C6和C7形成C5b67三分子复合物,C5b67吸附C8,C8是C9的吸附部位,可以与1~18个C9分子结合,并催化C9,使之聚合成内壁亲水的管状跨膜通道,使胞内物质释放出来,水进入细胞,细胞破裂。补体经典途径激活过程见图3-3。
图3-3补体经典激活途径
(二)替代途径
替代途径或称旁路途径,与经典途径的不同之处主要是越过C1、C4和C2,直接激活补体C3,然后完成C5~C9的激活过程;参与此途径的血清成分尚有B、D、P、H、I等因子。替代途径的激活物主要是细胞壁成分,如脂多糖、肽糖苷及酵母多糖等。
1.旁路C3转化酶的形成在生理条件下,血中的C3可受蛋白酶的作用水解少量的C3b,C3b可与邻近的细胞膜结合。如结合的物质是细胞壁上的脂多糖,则C3b的半衰期延长,足以使其与B因子结合形成C3bB复合物。B因子为C3激活剂前体(C3proactivator,C3PA),与结合在膜上的C3b构成C3PA复合物后,使其对D因子的作用更为敏感。D因子为C3PA转化酶原,炎症时增多,在Mg2+存在时转化为活性形式,能使C3bB中的B因子裂解出无活性的小碎片Ba,剩余的C3bBb即旁路C3转化酶。C3bBb与正常血清中活化的P因子(properdin,P)结合成C3bBbP,而使其趋于稳定,减慢衰变。生理条件下C3bBb和C3bBbP使补体系统处于准激活状态,对补体的全面激活具有重要意义。
2.C5激活替代途径的激活物如细菌脂多糖或酵母脂多糖出现时,为C3b和C3bBb提供了可结合的表面,并保护它们不受I因子和H因子的迅速灭活,这时C3激活即由准备状态进入激活状态。C3bBb裂解C3产生C3a和C3b,C3b可与上述的C3bBb,C3bBbP形成多分子的复合物,C3bnBb或C3bnBbP,此即C5转化酶,其作用类似经典途径中的C4b2b3b,可使C5裂解为C5a和C5b,至此以后的补体激活过程与经典途径相同(图3-4)。
3.C3正反馈循环补体活化过程中形成的C3转化酶不断使C3裂解,生成大量的C3b;新产生的C3b又可与B因子结合,扩大进一步的活化,构成了一个正反馈的循环圈,放大了补体的激活作用。不论是经典途径,还是替代途径,只要有C3活化,就可以进入C3正反馈循环,产生放大效应。
图3-4旁路激活途径
(三)补体活化的调控
补体系统被激活后,进行系统有序的级联反应,从而发挥广泛的生物学效应,参与机体的防御功能。但如果补体系统活化失控,可形成过多的膜攻击复合物面产生自身损伤,或过多的炎症介质也会造成病理效应。正常机体的补体活化处于严密的调控之下,从而维持机体的自身稳定。
1.补体的自身调控补体激活过程中生成的某些中间产生非常不稳定,成为补体级联反应的重要自限因素。如C3转化酶C4b2b和C3bBb均易衰变,从而限制了C3的裂解及其后的酶促反应,与细胞膜结合的C4b、C3b及C5b也易衰变,可阻断级联反应。此外,只有细胞表面形成的抗原抗体复合物才能触发经典途径,而旁路途径的C3转化酶则仅在特定的物质表面才具有稳定性,故正常机体内一般不会发生过强的自发性补体激活反应。
2.调节因子的作用体内的存在多种可溶性膜结合的补体调节因子,它们以特定方式与不同的补体成分相互作用,使补体的激活与抑制处于精细的平衡状态,调节蛋白的缺失有时是造成某些疾病发生的原因。目前发现的补体调节蛋白有十余种,按其作用特点可分为三类:①防止或限制补体在液相中自发激活的抑制剂;②抑制或增强补体对底物正常作用的调节剂;③保护机体组织、细胞免遭补体破坏作用的抑制剂。主要的补体调节因子及其功能见表3-3。
表3-3主要补体调节蛋白及其活性
分布 | 靶分子 | 功能 | |
C1抑制物 | 血清 | C1r,C1s | 丝氨酸蛋白酶抑制剂,C1r,C1s与无活性C1结合,抑制激肽释放酶、纤溶酶和凝血因子XIa,XIIa |
C4结合蛋白 | 血清 | C4b | 加速C4b2b衰变,辅助I因子介导的C4b裂解 |
H因子 | 血清 | C3b | 加速C3bBb衰变,辅助I因子介导的C3b裂解 |
I因子 | 血清 | C4b,C3b | 裂解C3和灭活C3b,C4b |
过敏毒素灭活 | 血清 | C3a,C4b,C5a | 水解末端精氨酸残基,灭活过敏毒素因子 |
S蛋白 | 血清 | C5b67 | 防止MAC插入细胞膜 |
SP40,40 | 血清 | C5b~9 | 调节MAC形成膜结合蛋白 |
CR1(CD35) | 多数血细胞
肥大细胞 |
C3b,C4b,iC3b | 加速C3转化,辅助I因子介导C3b和C4b降解 |
膜辅助蛋白(MCP、CD46) | 血细胞,上皮细胞等 | C3b,C4b | 辅助I因子介导C3b和C4B降解 |
促衰变因子(DAF) | 多数血细胞 | C4b2b,C3bBb | 加速C3转化酶降解 |
同源限制因子(HRF,C8bp) | 多数血细胞 | C8,C9 | 抑制旁观细胞溶解,防止C9与C8结合,防止MAC引起自身细胞溶解 |
膜反应溶解抑制因子(MIRL) | 多数血细胞 | C7,C8 | 抑制旁观细胞溶解,防止C7,C9与C5b,C6结合,防止MAC形成及其溶细胞作用 |
补体是机体重要的免疫效应系统之一。补体系统活化可以溶解细胞,在活化过程中产生的中间复合物及某些片段也具有多种多样的生物活性;所以补体系统结机体的作用是多方面的,既可参与机体的防御效应和自身稳定,亦可引起免疫损伤。
(一)溶细胞作用
不论何种途径活化,补体系统都能对其粘附的细胞产生溶解作用。在经典活化途径中,抗体的作用只是特异性地定位靶细胞和活化补体,而靶细胞的溶解则是补体系统的作用结果。对不同种类的靶细胞,补体的溶解效果亦不相同;例如革兰阴性杆菌、支原体、异体红细胞和血小板对补体很敏感;革兰阳性菌对补体不敏感。
补体的溶细胞反应不仅可以抗菌,也可抵抗其它微生物及寄生虫的感染。病毒在与相应的抗体结合后,补体的参与可显著增强抗体结病毒的灭活作用,其机制可能是直接溶解有包膜的病毒,防止病毒对易感细胞的吸附和穿入,或干扰病毒在细胞内的增殖。补体缺陷的病人,机体易受病原微生物的侵害。另一方面,补体也常常引起病理性反应,例如异型输血时的溶血反应,自身免疫病时的细胞损伤等都可由补体系统引起。
(二)免疫复合物清除作用
补体在活化过程中生成的中间产物,例如C3b和C4b等,对抗原抗体复合物有很强的亲和力,可共价结合到免疫复合物上,然后通过补体的其他效应对免疫复合物产生抑制或清除作用。
1.吞噬调理作用人及哺乳类动物的单核-巨噬细胞和中性粒细胞表面都在C3b和C4b受体,能与带有补体成分的免疫复合物相结合,将两者连接起来,促进吞噬细胞对免疫复合物的吞噬作用。在这种意义上,补体也可称为非特异性调理素(opsonin)。补体成分C3b、C4b、iC3b均有调理作用,这种调理作用在机体的抗感染过程中具有重要意义。
2.免疫粘附作用带有补体成分的免疫复合物还可通过C3b受体结合到红细胞和血小板的表面(免疫粘附作用)。被粘附的免疫复合物在肝中得到处理,或者通过吞噬作用促进其清除。
3.免疫复合物抑制作用C3和C4对免疫复合物的共价结合可导致如下结果:①阻碍免疫复合物相互结合形成大的网格而易于在组织中沉积;②阻止免疫复合物激活补体而诱发一系列的病理损伤;③可破坏免疫复合物的空间结构而使其溶解。上述作用对免疫复合物病有抑制效果,在补体活性降低或补体缺乏时,易发生免疫复合物病或使病情加重。
(三)炎症介质作用
补体是机体重要的炎症介质之一,可通过许多途径引起不同的炎症。
1.过敏毒素作用C5a和C3a可以作用到肥大细胞和嗜碱性粒细胞的细胞膜上,使细胞脱颗粒,释放组胺、白三烯及前列腺素等活性介质,引起类似过敏反应的病理变化(见第八章),所以将C5a和C3a称为过敏毒素(anaphylatoxin);现已发现C4a亦有较弱的过敏毒素作用。这类作用可被抗组胺药物封闭。
2.趋化作用C4a、C5a、C3a和C5b67是中性粒细胞和单核-巨噬细胞的趋化因子(chemotaxin),可使这些吞噬细胞向炎症部位聚集,加强对病原体的吞噬和消除,同时引起炎症反应。
3.激肽样作用C2a、C4a等具有激肽样活性,能增强血管的通透性,引起炎性充血。
补体各成分及其片段的生物活性总结在表3-4。
表3-4补体成分的生物学活性
补体成分 | 生物活性 | ||||||||||||||||||||
C1~C9 | 溶菌,杀菌和溶细胞作用 | ||||||||||||||||||||
C3b,C4b | 吞噬调理作用 | ||||||||||||||||||||
C3b | 免疫粘附作用 | ||||||||||||||||||||
C1q,C4 | 中和与溶解病毒作用 | ||||||||||||||||||||
C2a,C4a | 激肽样作用 | ||||||||||||||||||||
C3a,C5a,C4a | 过敏毒素作用 | ||||||||||||||||||||
C3a,C5a,C5b67 | 趋化因子 | ||||||||||||||||||||
C3,C4,CR1 | 溶解和清除免疫复合物第四节 补体的合成及代谢(一)补体的编码基因 补体系统的成分非常复杂,各成分的编码基因也分散在不同的染色体上,其中的大多数基因已被成功地克降出来,其产物的氨基酸顺序也得到测定。补体成分的许多蛋白质分子具有同种异构现象,显示其具有遗传多态性。几乎所有的补体蛋白均为单位点常染色体等显性遗传。 编码人C4、C2及B因子的基因在第6对染色体短臂上,与MHC系统的基因相邻,被命名为Ⅲ类组织兼容性基因,此种排列的意义尚不清楚。但有趣的是,第6对染色体上各有2个C4基因位点,分别编码C4A和C4B,两者具有不同的生物活性。现已清楚C4基因中至少有1个无效等位基因(nullallele)可能与自身免疫的发病有关。 与C4和C3反应的许多调节蛋白的基因被组合在一起,在第一对染色体上形成1个超基因家族(superfamily)。此超基因家族编码的蛋白现已知的有:H因子、C4bp、DAF、CR1、CR2等;这些产物都有1个60个氨基酸残基组成的反复重复排列的同源区,可能来自同1个基因前体。 (二)补体合成的器官和细胞 人类2周龄胚胎已具有补体溶血活性,出生时其脐血中的补体溶血活性已达成人的一半,出生后1周时即接近其母体水平。由于补体的产生比抗体产生早,故补体对机体的早期抗微生物感染具有重要意义。 肝是产生补体的主要器官,大部分补体可在肝细胞内合成。其他的一些器官和组织也能产生不同的补体成分,主要细胞是巨噬细胞(表3-5)。 表3-5补体的产生部位
(三)补体的代谢平衡 和其他血蛋白一样,补体在机体内受各种因素的调节,维持其含量的相对平衡。补体成分可被血中的蛋白酶直接降解,在病理情况下补体的代谢速率反映补体的激活程度。补体活化后的酶解片段迅速在体液中失活,并很快地从循环中清除,沉着于细胞表面及组织中会被消耗或分解,例如C3在C3转化酶的作用下,生成有活性的C3a和C3b,C3b降解为无活性的iC3b,再裂解为C3c和C3dg,最后降解为C3d和C3g。血中的其他补体成分也有相似的代谢方式。 在不同疾病的进展过程中,补体的代谢速度变化非常大。临床观察补体含量时应取不同时期的标本进行动态观察,才能了解补体的动态变化。另外,补体的正常水平存在很大的个体差异,补体成分的更新也较快,故单凭测定补体成分含量,有时很难反映补体系统的激活情况,现主张应用测定补体单个成分及其相应裂解产物的方式,例如测定血清C3a、C5c、C3d等。补体碎片的连续测定,对预报有关疾病活动情况是很有价值的。 补体血清水平的变化对有关疾病的诊断具有重要意义,例如系统性红斑狼疮和肾小球肾炎时,由于补体系统被免疫复合物过度激活,导致C3接近耗竭,其他补体成分也减少;临床症状改善后,其含量又回升。遗传性血管神经性水肿时由于C1INH缺陷导致C4过度消耗,造成补体含量下降;肝病患者由于肝功能障碍导致蛋白合成能力下降,出现低补体血症。这些患者均有不同程度的对传染病和化脓性细菌的易感性增高;另一方面在发生感染时,常出现代偿性的血液补体含量升高,以抵抗外来微生物的侵入。 |
补体系统的各组分在体液中通常以非活性状态、类似酶原的形式存在,当受到一定因素激活,才表现出生物活性。补体的激活途径主要有两种,即经典途径(claasicalpathway)和替代途径(alternativepathway)。
(一)经典途径
经典途径是以结合抗原后的IgG或IgM类抗体为主要激活剂,补体C1~C9共11种成分全部参与的激活途径。现发现除抗原抗体复合物外,还有许多因子可激活此途径,如非特异性凝集的Ig、细菌脂多糖、一些RNA肿瘤病毒、双链DNA、胰蛋白酶、纤溶酶、尿酸盐结晶、C-反应蛋白等。经典活化途径可人为地分成识别、活化和膜攻击3个阶段。
1.识别阶段在抗体结合抗原形成复合物后,与C1q结合。IgG1、IgG2、IgG3的补体结合位点在CH2区内,而IgM补体结合位点在CH3区内,IgG4、IgA、IgD和IgE不能结合补体。电镜下观察发现,C1q的球形结构与抗体结合后,进一步激活C1r和C1s,C1s具有酯酶活性,继之进入下一步的连续反应(图3-3)。研究还发现激活C1q的球形分子必须具有2个以上紧密相邻的IgG分子,IgM只需1分子即可,故单分子IgM比IgG激活补体的能力大得多,在补体介导的抗体溶细胞反应中,同量的IgM比IgG更有效。
2.活化阶段此阶段主要形成2种重要的转化酶:C3转化酶C4b3b和C5转化酶C4b2b3b。C4和C2均为C1酯酶的天然底物,C1使C4裂解成C4b和游离的C4a两个片段。C4bα链断端上暴露的硫酯键高度不稳定,可与细胞表面的蛋白质或糖形成共价酰胺键或酯键,在Mg2+存在时C1和C4b一起将C2裂解成大片段C2b和游离的小片段C2a。C2b和C4b结合可形成C4b2b(C3转化酶),将C3裂解成大片段C3b和游离的小片段C3a。继而C3b结合至C4b2b附着的邻近细胞膜上,形成C4b2b3b三分子复合物,即C5转化酶。
3.膜攻击阶段此期形成膜攻击复合物(membraneattackcomplex,MAC)使靶细胞溶解。C5转化酶将C5裂解为C5b和游离的小分子C5a,C5b与细胞膜结合,继而结合C6和C7形成C5b67三分子复合物,C5b67吸附C8,C8是C9的吸附部位,可以与1~18个C9分子结合,并催化C9,使之聚合成内壁亲水的管状跨膜通道,使胞内物质释放出来,水进入细胞,细胞破裂。补体经典途径激活过程见图3-3。
图3-3补体经典激活途径
(二)替代途径
替代途径或称旁路途径,与经典途径的不同之处主要是越过C1、C4和C2,直接激活补体C3,然后完成C5~C9的激活过程;参与此途径的血清成分尚有B、D、P、H、I等因子。替代途径的激活物主要是细胞壁成分,如脂多糖、肽糖苷及酵母多糖等。
1.旁路C3转化酶的形成在生理条件下,血中的C3可受蛋白酶的作用水解少量的C3b,C3b可与邻近的细胞膜结合。如结合的物质是细胞壁上的脂多糖,则C3b的半衰期延长,足以使其与B因子结合形成C3bB复合物。B因子为C3激活剂前体(C3proactivator,C3PA),与结合在膜上的C3b构成C3PA复合物后,使其对D因子的作用更为敏感。D因子为C3PA转化酶原,炎症时增多,在Mg2+存在时转化为活性形式,能使C3bB中的B因子裂解出无活性的小碎片Ba,剩余的C3bBb即旁路C3转化酶。C3bBb与正常血清中活化的P因子(properdin,P)结合成C3bBbP,而使其趋于稳定,减慢衰变。生理条件下C3bBb和C3bBbP使补体系统处于准激活状态,对补体的全面激活具有重要意义。
2.C5激活替代途径的激活物如细菌脂多糖或酵母脂多糖出现时,为C3b和C3bBb提供了可结合的表面,并保护它们不受I因子和H因子的迅速灭活,这时C3激活即由准备状态进入激活状态。C3bBb裂解C3产生C3a和C3b,C3b可与上述的C3bBb,C3bBbP形成多分子的复合物,C3bnBb或C3bnBbP,此即C5转化酶,其作用类似经典途径中的C4b2b3b,可使C5裂解为C5a和C5b,至此以后的补体激活过程与经典途径相同(图3-4)。
3.C3正反馈循环补体活化过程中形成的C3转化酶不断使C3裂解,生成大量的C3b;新产生的C3b又可与B因子结合,扩大进一步的活化,构成了一个正反馈的循环圈,放大了补体的激活作用。不论是经典途径,还是替代途径,只要有C3活化,就可以进入C3正反馈循环,产生放大效应。
图3-4旁路激活途径
(三)补体活化的调控
补体系统被激活后,进行系统有序的级联反应,从而发挥广泛的生物学效应,参与机体的防御功能。但如果补体系统活化失控,可形成过多的膜攻击复合物面产生自身损伤,或过多的炎症介质也会造成病理效应。正常机体的补体活化处于严密的调控之下,从而维持机体的自身稳定。
1.补体的自身调控补体激活过程中生成的某些中间产生非常不稳定,成为补体级联反应的重要自限因素。如C3转化酶C4b2b和C3bBb均易衰变,从而限制了C3的裂解及其后的酶促反应,与细胞膜结合的C4b、C3b及C5b也易衰变,可阻断级联反应。此外,只有细胞表面形成的抗原抗体复合物才能触发经典途径,而旁路途径的C3转化酶则仅在特定的物质表面才具有稳定性,故正常机体内一般不会发生过强的自发性补体激活反应。
2.调节因子的作用体内的存在多种可溶性膜结合的补体调节因子,它们以特定方式与不同的补体成分相互作用,使补体的激活与抑制处于精细的平衡状态,调节蛋白的缺失有时是造成某些疾病发生的原因。目前发现的补体调节蛋白有十余种,按其作用特点可分为三类:①防止或限制补体在液相中自发激活的抑制剂;②抑制或增强补体对底物正常作用的调节剂;③保护机体组织、细胞免遭补体破坏作用的抑制剂。主要的补体调节因子及其功能见表3-3。
表3-3主要补体调节蛋白及其活性
分布 | 靶分子 | 功能 | |
C1抑制物 | 血清 | C1r,C1s | 丝氨酸蛋白酶抑制剂,C1r,C1s与无活性C1结合,抑制激肽释放酶、纤溶酶和凝血因子XIa,XIIa |
C4结合蛋白 | 血清 | C4b | 加速C4b2b衰变,辅助I因子介导的C4b裂解 |
H因子 | 血清 | C3b | 加速C3bBb衰变,辅助I因子介导的C3b裂解 |
I因子 | 血清 | C4b,C3b | 裂解C3和灭活C3b,C4b |
过敏毒素灭活 | 血清 | C3a,C4b,C5a | 水解末端精氨酸残基,灭活过敏毒素因子 |
S蛋白 | 血清 | C5b67 | 防止MAC插入细胞膜 |
SP40,40 | 血清 | C5b~9 | 调节MAC形成膜结合蛋白 |
CR1(CD35) | 多数血细胞
肥大细胞 |
C3b,C4b,iC3b | 加速C3转化,辅助I因子介导C3b和C4b降解 |
膜辅助蛋白(MCP、CD46) | 血细胞,上皮细胞等 | C3b,C4b | 辅助I因子介导C3b和C4B降解 |
促衰变因子(DAF) | 多数血细胞 | C4b2b,C3bBb | 加速C3转化酶降解 |
同源限制因子(HRF,C8bp) | 多数血细胞 | C8,C9 | 抑制旁观细胞溶解,防止C9与C8结合,防止MAC引起自身细胞溶解 |
膜反应溶解抑制因子(MIRL) | 多数血细胞 | C7,C8 | 抑制旁观细胞溶解,防止C7,C9与C5b,C6结合,防止MAC形成及其溶细胞作用 |