炎症(inflammation)是各种致病因素引起的局部组织的防御性反应;其基本病理变化为组织的变质、渗出和增生,典型的急性炎症表现为红、肿、热痛和功能障碍。引起炎症的原因很多,如物理因素、化学因素、生物学因素和免疫学因素等。由免疫学因素介导的或免疫应答过程导致的炎症称为免疫炎症或炎症性应答。
免疫炎症是针对有害因子的积极反应,例如血管通透性增加可以促进炎症细胞跑到炎症反应部位,液体渗出有助于稀释有害的抗原,局部血凝可以限制抗原进入血循环而扩散,支气管收缩可加速气流促进变应的原排出。但是上述的变化也同样地干扰了正常的生理环境,表现出一系列的病理改变和病理生理过程,通常称之为变态反应(allergy)或超敏反应(hypersensitivity)。因此,免疫炎症与变态反应是一种过程的两个方面,变态反应是免疫炎症的病理与临床表现。
参与炎症应答的细胞都可称作炎症细胞(inflammatorycell);其中有些是组织固定细胞,例如巨噬细胞、肥大细胞和内皮细胞等;有些是循环细胞,例如淋巴细胞、粒细胞和血小板等。淋巴细胞和巨噬细胞虽然是免疫炎症的中心细胞,但已在第四章详细叙述;本节主要介绍其他炎症细胞。
一、中性粒细胞
中性粒细胞(neutrophil)来源于骨髓,形成特征是具有分叶形或杆状的核,胞浆内含有大量既不嗜碱也不嗜酸的中性细颗粒。这些颗粒多是溶酶体,内含髓过氧化酶、溶菌酶、碱性磷酸酶和酸性水解酶等丰富的酶类,与细胞的吞噬和消化功能有关。
中性粒细胞在血液中占白细胞总数的60%~70%,而在骨髓储库中约100倍于血液中的数量;中性粒细胞是短寿的终末细胞,释放骨髓后在血流中仅数小时便移血管外,并在1~2天内凋亡;因此骨髓造血能力的60%左右用来维持中性粒细胞的数量平衡。
中性粒细胞表面表达IgGFc受体,多是中亲和力的FcγRⅡ和低亲和力的FcγRⅢ,有时受细胞因子的诱导也可表达高亲和力的FcRⅠ;还表达补体片段C3b和C4b以及某些特殊因子的受体。表面受体与相应配体作用后,可以活化中性粒细胞某方面的特殊功能。
1.趋化运动活性中性粒细胞受到某些化学因子的作用以后,可以朝因子源方向移动,这种现象称为趋化作用(chemotaxis),该化学物质称为趋化因子(chemotacticfactor)。中性粒细胞的趋化因子有两类:一是自身组织损伤释放的因子,例如胶原和纤维蛋白片段、补体活化产物及免疫细胞因子等;另一是微生物来源的含有N-早酰蛋氨酸残基的多肽。
受趋化因子作用后,中性粒细胞表面的L-选择素(selectin)数量增加,血管内皮细胞开始表达P-或E-选择素;这两类选择素结合可使细胞贴向血管壁,称为着边作用(margination);这时中性粒细胞迅速表达整合素(intergrin),例如MAC-1和LFA-1等,与内皮细胞的配体结合可使中性粒细胞变扁,紧密粘贴内皮细胞;继而中性粒细胞变形移出血管外,以阿米巴运动的方式向趋化源移动。这种过程多发生在毛细血管微静脉血流缓慢处。
2.吞噬杀伤效应到达损伤感染部位后,中性粒细胞可对细菌、细胞碎片或其他颗粒表现活跃的吞噬作用;但如合识别这些目标尚不明了,可能与被吞噬物表面的亲水性有关。吞入的方式有以下几种:①吞噬作用(phagocytosis),这是捕获大型颗粒抗原的主要方式,例如对同种细胞、细菌等微生物,都可以吞噬,吞噬后在胞浆内形成吞噬体;②胞饮作用(pinocytosis),与吞噬作用相似,只是针对微小颗粒;胞饮后在胞浆内形成吞饮小泡;③受体介导的内摄作用(receptormediatedendocytosis),可借助细胞表面的某些受体连接被吞噬物;例如对那些结合有IgG或补体片段的抗原颗粒,中性粒细胞可通过其表面受体增强吞噬活性,这种现象称为吞噬调理作用(opsnization)。
颗粒被吞入后,由细胞膜将其包绕形成一个吞噬体,吞噬体与溶酶体融合形成吞噬溶酶体(phagolysosome),这时溶酶体酶就会活化,通过一系列的代谢机制将吞入的微生物杀死并进行降解。完成这一过程后细胞本身也衰老死亡。
3.抗感染和应用激作用当机体遭受急性损伤或休脓性细菌感染时,会有大量的中性粒细胞向受体部位集中;同时骨髓的储备库释放和造血功能增强;机体表现为外周血中性粒细胞显著增加;局部死亡的白细胞和受累细胞液化形成脓汁。
中性粒细胞以其庞大的数量和迅速的行动发挥抗感染和创伤修复的作用,当中性粒细胞缺陷时,机体容易发生化脓菌感染和创伤修复缓慢。
图8-1中性粒细胞趋化作用和吞噬作用示意图
上图:趋化着边作用;下图:吞噬消化作用
二、肥大细胞和嗜碱性粒细胞
肥大细胞(mastcell)和嗜碱性粒细胞(basophil)虽在来源、性质和分布方面都不相同,但它们在表面特征和活性方面非常相似,都是IgE介导型炎症的主要效应细胞。
(一)肥大细胞
肥大细胞的形态呈多样性,通常为圆形或者椭圆形,直径大约10~15μm,表面有许多放射状突起;细胞核呈圆形,位于细胞中央;胞浆内充满很多特异性颗粒,用碱性染料(如甲苯胺蓝)染色时呈紫红色。颗料内含有大量的组胺、肝素、TNFα和其他炎症介质,还含有超氧化岐化酶、过氧化物酶和许多酸性水解酶等。
肥大细胞来源于骨髓干细胞,在祖细胞时期便迁移至外周组织中,就地发育成熟。肥大细胞在全身各处沿神经和血管附近分布,尤其多见于结缔组织和粘膜中。粘膜中的肥大细胞成熟与胸腺的诱导相关,颗粒中含组胺较少;结缔组织中的肥大细胞是胸腺非依赖性的,颗粒中含有大量的组胺。
肥大细胞的突出特点是表面有大量的高亲和性IgE受体(FcεRⅠ)。FcεRⅠ含有4条多肽链(α、β、2γ),暴露于细胞外的是链,与IgE的Fc有较强的结合力;两条链伸向胞浆内部,在结构和功能上都象CD3分子的ζ链;β链在细胞膜中将α和γ连接起来。通过FcR,肥大细胞可从循环中吸附大量的IgE分子在细胞表面,作为相应抗原的特异性受体。
(二)嗜碱性粒细胞
嗜碱性粒细胞是外周血颗粒性白的一个类型。细胞呈圆形,直径约5~7μm,在粒细胞中形态较小,细胞数也少,约占血中有核细胞总数的1%。嗜碱性粒细胞在骨髓内发育成熟,成熟细胞存在于血液中,只有在发生炎症时受趋化因子诱导才迁移出血管外。
嗜碱性粒细胞与肥大有许多相同的特性,例如胞浆内含有丰富的嗜碱性颗粒,细胞表面表达FcRⅠ,与抗原结合后可使细胞活化,释放颗粒和炎症介质等。两种细胞的比较见表8-1。
表8-1肥大细胞与嗜碱性粒细胞特性比较
肥大细胞 | 碱性粒细胞 | |
细胞直径 | 10~15μm | 5~7μm |
细胞核 | 圆形或卵圆形 | 两叶或多叶 |
细胞外形 | 光滑有窄突起 | 偶有短宽突起 |
主要分布 | 粘膜和结缔组织 | 血液 |
细胞寿命 | 数周~数月 | 数日 |
增殖能力 | 增殖 | 不增殖 |
颗粒颗粒内含物 | 组胺、肝素、硫酸软骨素、中蛋性白酶 | 组胺、硫酸软骨素、中性蛋白酶 |
释放介质 | TNFα、PAF、LTC4、PGD2 | LTC4、TNFα |
三、嗜酸性粒细胞
嗜酸性粒细胞(eosinophil)是直径约10~15μm的圆形细胞,因其富含嗜酸性颗粒而得名。细胞的嗜酸性颗粒中含有多种酶类,如过氧化物酶、酸性磷酸酶、组胺酶、芳基硫酸酯酶、磷脂酶D、血纤维蛋白溶酶等;还含有较多的碱性组蛋白,因此使颗粒呈嗜酸性。嗜酸性粒细胞来源于骨髓,爱GM-CSF、IL-2和IL-3的诱导发育成熟。该细胞的寿命很短,在骨髓有2~6天的成熟期,在循环中的半寿期约6~12h,在结缔组织中可存活数日。
血循环中的嗜酸性粒细胞约占白细胞总数的3%,但这个数字只占嗜酸性粒细胞总数的一小部分。估计在骨髓和其他结缔组织中的成熟嗜酸性粒细胞约200倍和500倍于循环中的同类细胞。IgE型超敏反应和寄生虫病时嗜酸性粒细胞数量增多;并且可受趋化因子的作用向局部组织中集聚。
嗜酸性粒细胞表达低亲和性IgE受体FcεRⅡ,在正常血清IgE水平时有与IgE结合;约10%~30%的细胞表达FcγRⅢ或FcγRⅡ(表8-2);约40%50%的细胞表达补体受体。这些受体与带相应配体的抗原结合可使细胞活化,GM-CSF、IL-1、IL-2、IL-5和TNFα等细胞因子也可使细胞直接活化。活化的嗜酸性粒细胞主要表现下列生物活性:
表8-2炎症细胞的免疫球蛋白受体
受体 | 中性粒细胞 | 单核细胞 | 肥大细胞 | 嗜碱粒性细胞 | 嗜酸性粒细胞 | 血小板 |
IgG | ||||||
IgG1 | + | + | - | ? | + | + |
IgG2 | + | + | - | - | ? | + |
IgG3 | + | + | - | - | ? | + |
IgG4 | + | + | - | - | ? | + |
IgM | - | - | - | - | - | - |
IgA | + | + | - | - | ? | - |
IgD | - | - | - | - | + | - |
IgE | - | + | + | + | + | + |
FcRⅠ | - | - | + | + | - | - |
FcRⅡ | - | + | ? | ? | + | + |
1.趋化与吞噬作用嗜酸性粒细胞的趋化因子包括过敏反应中产生的ECF-A、补体活化过程中产生的ECF-C和T细胞来源的ECF-L等;受趋化因子作用后,嗜酸性粒细胞在体外对细菌、真菌和抗原抗体复合物等的吞噬能力已经得到证明,但在体内的吞噬作用尚需更确实的证据。
2.过敏反应调节作用嗜酸性粒细胞参与IgE型超敏反应的调节作用。当肥大细胞或嗜碱性粒细胞的表面IgE与相应抗原结合诱发过敏反应时,会产生ECF-A吸引嗜酸性粒细胞聚集,并释放组胺酶分解组胺,释放芳基硫酸酯酶分解白三烯,消除过度的炎症反应。这样,嗜酸性粒细胞与肥大细胞和嗜碱性粒细胞之间形成一个反馈的调节机制,在过敏反应强烈时嗜酸性粒细胞的这种调节作用更加明显。
3.对寄生虫感染的应答机体受寄生虫感染后,可产生相应的抗体,抗体与抗原结合可激活补体,形成ECF-C;另一方面,寄生虫抗原又使T细胞致敏,产生ECF-L。这些趋化因子可吸引许多嗜酸性粒细胞到寄生虫感染部位,并释放过氧酶等物质,对寄生虫发挥毒性杀伤作用。
4.纤维蛋白溶解作用嗜酸性粒细胞能释放纤维蛋白溶酶;还可释放磷脂酶D,分解能引起血栓形成的血小板激活因子;因此,嗜酸性粒细胞参与防止血管内凝血,消除已形成的纤维蛋白。
四、血小板
血小板(platelet)是骨髓内巨核细胞脱离的细胞质片段,形状不规则,内含三种类型的颗粒(致密颗粒、α颗粒和溶酶体颗粒)。血小板在血液中的平均寿命约10天,其主要功能是使血液凝固;也能够生成、储存和释放生物活性介质,如在花生四烯酸代谢产物(PGG2、PGH2和促血栓素A2)、生长因子、生物活性胺及中性和酸性水解酶等。
血小板表面有IgGFc受体,也有低亲和性IgEFc受体(FcεRⅡ)。FcεRⅡ可使血小板与IgE包被的寄生虫结合,并释放细胞毒性产物,例如过氧化氢或其他氧化代谢产物;抗原与IgE结合也可通过FcεRⅡ诱导血小板激活因子生成。
五、内皮细胞
内皮细胞(endothelialcell)通过促进和调节循环的炎症细胞而参与炎症应答。内皮细胞可以受细胞因子(如IL-1、IFNγ、TNF)或其他免疫应答主物的作用而活化,增加对单核细胞、中性粒细胞和其他循环细胞的粘附作用;活化的内皮细胞有时表达MHCⅡ类分子,表现原递呈功能;也可分泌IL-1和GM-CSF,调节免疫应答。
炎症介质是炎症过程中形成或释放、并参与炎症反应的活性物质。通常,具备以下条件可认为是炎症介质:①用适当浓度介质可在相关组织引起相似的炎症反应;②炎症时介质能从组织中释放;③炎症组织中存在该介质生成的酶,当介质增加时有酶活性增强;④体内存在使该介质分解、吸收或脱敏的机制;⑤用药理学方法改变介质的合成、储存、释放或代谢时可影响炎症过程;⑥该介质过多或缺乏对炎症反应有可预见的影响;⑦能证明在靶细胞上存在相应的介质受体,并可触发或调节特异性炎症反应。
炎症介质的种类繁多,许多细胞因子可以是良好的炎症介质,已在第五章叙述;其它的主要介质可分为4类,见表8-3。
表8-3主要炎症介质
类别 | 主要介质 | 存在形式 |
血管活性与平滑肌收缩介质 | 组胺、腺苷、PAF、花生四烯酸产物 | 储存释放临时生成 |
酶类介质 | 胰蛋白酶等 | 储存释放 |
趋化因子 | 细胞因子、PAF、补体产物、LTB4 | 储存释放临时生成 |
蛋白聚糖 | 肝素 | 储存释放 |
一、血管活性与平滑肌收缩介质
(一)组胺
组胺(histamine)是最早发现的一种炎症介质,分子量111,由左旋组氨酸脱羧后生成。组胺生成后储存于肥大细胞和嗜碱性粒细胞的颗粒中,占颗粒内容物重量的10%。组胺在颗粒中以肝素结合的形式存在,当通过脱颗粒作用释放到细胞外时,组胺与肝素分离,发挥活性作用。
组胺通过3种不同的靶细胞受体发挥生理作用,这些受体分别命名为H1、H2和H3,各自的组织活性见表8-4。
表8-4组胺受体及其活性
受体 | 活性及效应 |
H1 | 后微静脉通透性增加,平滑肌收缩,肺血管收缩,细胞内cGMP水平升高,粘液分泌增加,白细胞化学激活作用,肺部前列腺素的产生 |
H2 | 促进胃酸分泌,促进粘液分泌,提高细胞内cAMP水平,白细胞化学激活作用,诱导T细胞抑制 |
H3 | 抑制组胺释放,抑制组胺合成 |
组胺在炎症中的作用主要由H1受体介导,且于治疗过敏反应的抗组胺药物也是通过选择性地阻断H1受体而发挥作用。H2受体可被西莫替丁和雷尼替丁阻断,临床上常用来治疗消化性溃疡。H3受体活化能抑制组胺的合成和释放,使组胺的致炎作用减弱或消失;这是机体生理平衡需要的一种自限方式。
引起组胺释放的因素很多,主要是IgE介导的反应;某些理化因素也可诱导组胺释放。组胺的半衰期较短,约为30~60min;之后便被组胺酶及N-甲基转移酶和单胺氧化酶作用,转化为各种无活性的代谢产物随尿排出。
组胺在炎症中的作用如下:
(1)舒血管活性:组胺可引起微动脉舒张,使毛细血管前阻力降低;使毛细血管后微静脉的通透性增强,血中大分子物质渗出;这些变化导致局部充血水肿,严重时发生休克。
(2)非血管平滑肌收缩:组胺可使多种组织的平滑肌收缩,支气管平滑肌对组胺尤为敏感,实验动物可因支气管痉挛而致死。这是引起支气管哮喘的主要机制。
(3)腺体分泌增加:组胺能引起胃酸大量分泌,其机制是与H2受体结合激活了腺苷酸环化酶,使细胞内cAMP水平升高,因其胃壁细胞分泌增加。组胺对其他消化腺、支气管腺和泪腺也有较弱的作用。
(4)致痒作用:组胺刺激神经末梢可引起皮肤发线和瘙痒,这是过敏反应常见的症状。
(二)花生四烯酸代谢产物
花生四烯酸为二十碳不饱和脂肪酸,它可经磷脂酶C和二酰甘油脂酶的作用从膜磷脂释放出来,也可经脂酶A2直接作用于膜磷脂而产生。花生四烯酸的代谢产物有多种,主要可分为两类:经环氧化酶作用产生的前列腺素(prostaglandin,PG)类和经脂氧化酶作用产生的白三烯(leukotrienes,LT)类。这类物质不是储存性介质,是在过敏反应发生后才产生的。
1.前列腺素类环氧化酶的产物主要有:PGG2、PGH2、PHI2、PGF2和PGD2,另外还有一部分血栓素TXA2和TXB2等。PG在炎症中的作用有:①舒张血管作用,肥PGI2作用最强;②对支气管、胃肠和子宫平滑肌的收缩作用;③增强腺体分泌作用;④趋化因子作用;⑤免疫症调节作用:PGE2低浓度时能抑制腺苷酸环化酶,使cAMP水平降低引起炎症;当高浓度时又可使cAMP水平升高,产生炎症抑制效应,例如可抑制嗜碱性粒细胞释放组胺、抑制Tc细胞的杀伤作用、抑制中性粒细胞趋化运动和溶酶体酶的释放等。
2.白三烯类脂氧化酶产物主要有LTB4、LTC4、OTD4和LTE4。其中LTB4是一种趋化因子。LTC4、OTD4和LTE4过去曾统称为过敏反应的慢反应物质(SRS-A);可使平滑肌收缩和粘液分泌,LTs收缩支气管的能力比组胺强1001000倍,持续时间也长,是引起支气管哮喘的主要原因。另外,LTs还可引起血压下降和心律失常。
(三)血小板激活因子
血小板激活因子(plateletactivaitngfactor,PAF)是一种磷脂类介质,主要由活化的肥大细胞和血小板释放,因有激活血小板的能力而命名。PAF可凝聚和活化血小板,使其释放活性胺类,引起毛细血管扩张和通透性增强;可激活中性粒细胞和嗜酸性粒细胞,是已知的最强的嗜酸性粒细胞趋化因子;注入皮肤可引起红肿和白细胞浸润;吸入时可引起急性的支气管收缩。PAF正常情况下以一种非活化形式储存于细胞中,细胞活化时释放出来,经磷脂酶D作用后失去活性。
(四)感觉神经肽
感觉神经肽是一组由感觉神经末梢释放的肽类物质,主要包括P物质(SP)、神经激肽(neurokinin)A、B(NKA,NKB)及降钙素基因相关肽(CGRP)等。
感觉神经肽具有明显的促炎作用,能通过轴突反射机制引起神经源性炎症和加重炎症反应。CGRP对人皮肤是一种很强的血管扩张剂,大剂量时引起血管壁通透性增加,形成荨麻疹。而SP除能引起血管扩张外,更是一种极强的致水肿因子。体外研究表明,SP具有收缩人支气管平滑肌的作用,NKA作用更强。SP还可刺激呼吸道粘膜分泌。在致炎因子作用下,从感觉神经末梢释放的SP,能使邻近的肥大细胞释放组胺,而组胺和激肽等炎症介质又可刺激感觉神经末梢释放SP。
二、其他炎症介质
(一)酶类介质
炎症细胞颗粒中存在多种酶类介质,细胞脱颗粒时释放出来,参与补体活化、血液凝固或激肽(kinin)的生成。
1.激肽原酶(kininogenase)为肥大细胞和嗜碱性粒细胞颗粒中含有的酶类之一,释出后可活化激肽生成系统,将血浆中的激肽原转变为激肽。激肽生成系统是血液中除补体外的第二大介质形成系统,其多种中间产物与补体系统互有联系,终产物主要是缓激肽(bradykinin)。
缓激肽是9个氨基酸残基组成的小分子肽,可引起平滑肌收缩和血管通透性增加,刺激神经末梢引起疼痛。缓激肽的作用缓而持久,特别是对支气管的子宫平滑肌的作用更加明显。
2.类胰蛋白酶(trytpase)是肥大细胞颗粒中的另一酶类,能裂解补体成分C3产生C3a,也可作用于多种凝血因子。C3a是一种过敏毒素,也是一种趋化因子。
(二)趋化性介质
趋化因子是能吸引吞噬细胞作定向运动的化学物质,是一类重要的炎症介质。其中有一部分是细胞因子(第五章已述);一部分是补体裂解产物(第三章已述);另外,PAF和LTB4等对中性粒细胞和嗜酸性粒细胞也有趋化作用。
(三)蛋白聚糖
肥大细胞和嗜碱性粒细胞的颗粒中富含一种蛋白质-多糖复合物,称为蛋白聚糖(proteoglycans)。蛋白聚糖形成了颗粒的结构基质,也作为半抗原和其他介质的结合部位,例如硫酸软骨素主要就是这些功能。还有一些具有不同调节活性的蛋白多糖,如肝素,它除了具有抗凝血活性外,还有调节类胰蛋白酶的活性;每个肥大细胞约含5pg的肝素。
免疫炎症可由不同的途径引发,因此参与反应的炎症细胞、炎症因子和反应机制各不相同。一个世纪以来已观察到不同免疫炎症间的区别,许多认识是从皮肤试验得到的;因为皮肤易于发生各种类型的反应,且容易发现它们之间的区别。现在仍然经常用皮肤试验来判断患者是否对某种抗原发生超敏反应。免疫介导的炎症应答至少有4种类型(表8-5)。在人工皮肤试验情况下,单一的纯化抗原在特定的病人身上只能诱发一种类型的炎症应答;但复合抗原可同时涉及多种类型;人类对天然抗原的应答多是复合型反应。
表8-5免疫炎症的分类
炎症类型 | 潜伏期 | 效应细胞 | 主要介质 | 应答机制 |
IgE介导型 | ||||
速发相 | 10min | 肥大细胞、嗜酸性粒细胞、嗜碱性粒细胞 | 组胺、LTs | 血管和平滑肌反应 |
迟发相 | 6h | 肥大细胞、嗜碱性、嗜酸性和中性粒细胞 | PAF、PGD2、TNFα、LTs | 肥大细胞后期介质和效应 |
免疫复合物型 | 8h | 中性粒细胞等 | 补体产物 | 吞噬消化效应 |
细胞介导型 | 36h | 淋巴细胞、Mφ | 淋巴因子 | T细胞应答 |
皮肤嗜碱细胞型 | 36h | 嗜碱性粒细胞 | 不清 | 不清 |
一、IgE介导的炎症
IgE又称反应素(reagin)。它介导的炎症发作迅速、有明显的病理生理效应,但很少有组织破坏,多数在短期内即可恢复正常,亦称为过敏反应(anaphylaxis)。近年的研究发现,过敏反应的速发期过后,间隔数小时还会出现不完全相同的后期反应;分别称为过敏反应的速发相和迟发相,或者早期反应和晚期反应。
(一)早期反应
机体被某类抗原致敏后产生的IgE通过FcεRⅠ结合到肥大细胞和嗜碱性粒细胞上,当相应抗原与IgE结合时,会产生一个激动信号使肥大细胞活化,从而使细胞脱颗粒并释放炎症介质。
引发早期反应的抗原是多价的,必须与细胞表面2个或2个以上的IgE结合,形成抗体的桥联作用,才能产生细胞活化信号;这种效应也可由抗IgE抗体、丝裂原和过敏毒素引起。活化信号可使蛋白质酪氨酸激酶活化和细胞内钙离子水平升高,致使胞浆颗粒互相融合并与细胞的表面膜融合,将颗粒内容物释放到细胞外。
上述过程在抗原与IgE结合后的2~3min内就可完成。释放出的组胺等介质快引起毛细血管扩张和通透性强、平滑肌收缩和腺体分泌增加等效应,表现为皮肤红斑、丘疹、水肿和瘙痒,支气管哮喘,严重时可发生休克。这些反应在接触抗原后的15min达到高峰。
(二)晚期反应
晚期反应发生在接触抗原大约6h后,于反应部位出现嗜酸性粒细胞和中性粒细胞浸润,并可持续12d或更长时间,是为过敏反应的迟发相。
晚期反应主要由肥大细胞脱颗粒后形成的各种产物(例如PAF和各种花生四烯酸代谢产物)及预先形成的TNFα所引起,这些因子吸引粒细胞浸润,进一步加重炎症,表现为受累部位出现红斑、硬结、发热、搔痒和烧灼感。炎症部位可有纤维蛋白沉积,但无免疫球蛋白和补体沉积。TNFα不仅在短期内有白细胞趋化功能,而且刺激局部血栓形成、成纤维细胞增生和瘢痕形成。
一般情况下,IgE介导的炎症在抗原进入机体初期的防御中起着有益的作用,因为快速的血管扩张能使可溶性因子和细胞容易进入抗原接触部位。引起的超敏反应疾病主要归咎于后期吸引的白细胞作用而不是肥大细胞。
二、免疫复合物介导的炎症
免疫复合物(immunecomplex,IC)介导的炎症分为两种类型枣局部型Arthus反应和全身性血清病(serumsickness),其发生机制都是免疫复合物没积、补体活化和细胞浸润等过程。
(一)免疫复合物形成
抗原进入致敏的机体可与相应的抗体结合形成复合物;但只有含IgG(IgG4除外)和IgM类抗体的复合物才能活化补体的经典途径而引起炎症。这两类抗体在血清中含量较大,是构成免疫复合物的主要抗体;可溶性抗原与相应抗体形成的较大免疫复合物活化补体的能力较强。
IgG抗体为双价,可与相应的多价抗原交互结合形成较大的免疫复合物;IgM分子可形成更大的免疫复合物。抗原-抗体亲和力高时易形成大而稳定的免疫复合物。另外,抗原和抗体的相对比例与复合物的形成也密切相关;当抗原或抗体比例相差悬殊时,只能形成小的可溶性复合物;只有在抗原-抗体比例适当时,才能形成引起炎症的免疫复合物。
(二)免疫复合物沉积
较大网格的抗原抗体复合物容易从液相中沉淀出来,即沉淀素反应(precipitinreaction);免疫复合物的沉积还与局部因素有关,在毛细血管分支多、血流缓慢或富含胶原组织的部位,容易发生免疫复合物沉积。
如果免疫复合物在血流中形成,可通过循环沉积在全身各处,例如在动脉弹力层、血管周围、肾小球基底膜和关节滑漠等部位;所引起的病理现象可统称为血清病。另外,高浓度的抗原抗体复合物可以在某一局部形成,例如在皮肤注射部位,形成的免疫复合物不能进入循环,在局部就地沉积,引起局部型免疫复合物炎症,即Arthus反应。
(三)补体激活与炎症效应
当免疫复合物在某部位沉积时,可通过经典途径激活补体,所形成的活性介质C3a、C4a、C5a和C567等有中性粒细胞趋化作用,使大量中性粒细胞聚集在复合物沉积部位;中性粒细胞在吞噬复合物的过程中释放出溶酶体酶,造成周围组织的,损伤。还可直接或间接引起弥漫性微血栓、内皮细胞增生及巨噬细胞和淋巴细胞浸润。因为上述补体活性产物还有过敏毒素作用,所以有时还伴随着一定程度的过敏反应现象。
Arthus反应发生在多次重复注射同一种抗原的个体,在注射相应抗原1h后,局部可见水促和红晕,随后在数小时内可发展为出血和坏死,2~3天后逐渐被吸收愈合。Arthus反应除了发生在实验动物外,在人也可见到,例如在接种某些疫苗和长时期注射胰岛素者的注射部位;还可发生在昆虫叮咬处。
血清病是全身不同程度的血管炎,常发生在大量注射异种免疫血清或重复遭受某种感染的病人,可引起多咱临床表现,例如血管炎、肾小球炎、肺炎、系统性红斑狼疮、类风湿性关节炎和结节病等等。
三、细胞介导的炎症
细胞介导的炎症是指由巨噬细胞和T细胞介导的反应,发展较慢,在接触抗原后36小时才发生,所以也称迟发型超敏反应(DTH)。
DTH由抗原特异性TH促发,活化的TH释放细胞因子,进行免疫调节和诱导炎症发生。这些可使TH自身增殖;吸引其他循环细胞聚集,包括T细胞、B细胞、单核细胞、粒细胞等;促进吞噬、细胞杀伤、杀菌和抗原递呈功能。上述过程使局部血管扩张,进一步促使循环细胞到达反应部位;使得凝血系统和激肽系统被激活,纤维蛋白形成和沉积局部。纤维蛋白在限制炎症扩散和硬结的形成方面有重要意义,这是DTH的组织特征。
DTH的病理变化主要是局部淋巴细胞和巨噬细胞浸润;某些抗原如手术缝合线、硅胶、滑石、矿物油等异物及真菌、寄生虫、分枝杆菌等所引起的DTH以巨噬细胞浸润为主,导致肉芽肿形成。临床上常见的接触性皮炎、某些预防接种反应、同种移植排斥反应、肿瘤免疫、某些自身免疫病和对细胞内病原体的抗感染机制等都属于此类炎症反应。细胞介导的炎症对机体有保护作用,但强烈持久者也可导致宿主组织的损伤。
四、皮肤嗜碱性粒细胞超敏反应
皮肤嗜碱性细胞超敏反应常由蛋白质抗原引起,当抗原注入皮肤时,引起局部肿胀等DTH反应,但比典型DTH的损伤和瘙痒轻;主要病理变化为嗜碱性粒细胞浸润,但无DTH的肉芽肿等其他特征。这种类型的损伤似乎是抗体介导的,其形成机制尚不肯定。嗜碱性粒细胞浸润有时在同种肾移植中见到,提示这个过程可能是一种移植排斥现象。
炎症介质是炎症过程中形成或释放、并参与炎症反应的活性物质。通常,具备以下条件可认为是炎症介质:①用适当浓度介质可在相关组织引起相似的炎症反应;②炎症时介质能从组织中释放;③炎症组织中存在该介质生成的酶,当介质增加时有酶活性增强;④体内存在使该介质分解、吸收或脱敏的机制;⑤用药理学方法改变介质的合成、储存、释放或代谢时可影响炎症过程;⑥该介质过多或缺乏对炎症反应有可预见的影响;⑦能证明在靶细胞上存在相应的介质受体,并可触发或调节特异性炎症反应。
炎症介质的种类繁多,许多细胞因子可以是良好的炎症介质,已在第五章叙述;其它的主要介质可分为4类,见表8-3。
表8-3主要炎症介质
类别 | 主要介质 | 存在形式 |
血管活性与平滑肌收缩介质 | 组胺、腺苷、PAF、花生四烯酸产物 | 储存释放临时生成 |
酶类介质 | 胰蛋白酶等 | 储存释放 |
趋化因子 | 细胞因子、PAF、补体产物、LTB4 | 储存释放临时生成 |
蛋白聚糖 | 肝素 | 储存释放 |
一、血管活性与平滑肌收缩介质
(一)组胺
组胺(histamine)是最早发现的一种炎症介质,分子量111,由左旋组氨酸脱羧后生成。组胺生成后储存于肥大细胞和嗜碱性粒细胞的颗粒中,占颗粒内容物重量的10%。组胺在颗粒中以肝素结合的形式存在,当通过脱颗粒作用释放到细胞外时,组胺与肝素分离,发挥活性作用。
组胺通过3种不同的靶细胞受体发挥生理作用,这些受体分别命名为H1、H2和H3,各自的组织活性见表8-4。
表8-4组胺受体及其活性
受体 | 活性及效应 |
H1 | 后微静脉通透性增加,平滑肌收缩,肺血管收缩,细胞内cGMP水平升高,粘液分泌增加,白细胞化学激活作用,肺部前列腺素的产生 |
H2 | 促进胃酸分泌,促进粘液分泌,提高细胞内cAMP水平,白细胞化学激活作用,诱导T细胞抑制 |
H3 | 抑制组胺释放,抑制组胺合成 |
组胺在炎症中的作用主要由H1受体介导,且于治疗过敏反应的抗组胺药物也是通过选择性地阻断H1受体而发挥作用。H2受体可被西莫替丁和雷尼替丁阻断,临床上常用来治疗消化性溃疡。H3受体活化能抑制组胺的合成和释放,使组胺的致炎作用减弱或消失;这是机体生理平衡需要的一种自限方式。
引起组胺释放的因素很多,主要是IgE介导的反应;某些理化因素也可诱导组胺释放。组胺的半衰期较短,约为30~60min;之后便被组胺酶及N-甲基转移酶和单胺氧化酶作用,转化为各种无活性的代谢产物随尿排出。
组胺在炎症中的作用如下:
(1)舒血管活性:组胺可引起微动脉舒张,使毛细血管前阻力降低;使毛细血管后微静脉的通透性增强,血中大分子物质渗出;这些变化导致局部充血水肿,严重时发生休克。
(2)非血管平滑肌收缩:组胺可使多种组织的平滑肌收缩,支气管平滑肌对组胺尤为敏感,实验动物可因支气管痉挛而致死。这是引起支气管哮喘的主要机制。
(3)腺体分泌增加:组胺能引起胃酸大量分泌,其机制是与H2受体结合激活了腺苷酸环化酶,使细胞内cAMP水平升高,因其胃壁细胞分泌增加。组胺对其他消化腺、支气管腺和泪腺也有较弱的作用。
(4)致痒作用:组胺刺激神经末梢可引起皮肤发线和瘙痒,这是过敏反应常见的症状。
(二)花生四烯酸代谢产物
花生四烯酸为二十碳不饱和脂肪酸,它可经磷脂酶C和二酰甘油脂酶的作用从膜磷脂释放出来,也可经脂酶A2直接作用于膜磷脂而产生。花生四烯酸的代谢产物有多种,主要可分为两类:经环氧化酶作用产生的前列腺素(prostaglandin,PG)类和经脂氧化酶作用产生的白三烯(leukotrienes,LT)类。这类物质不是储存性介质,是在过敏反应发生后才产生的。
1.前列腺素类环氧化酶的产物主要有:PGG2、PGH2、PHI2、PGF2和PGD2,另外还有一部分血栓素TXA2和TXB2等。PG在炎症中的作用有:①舒张血管作用,肥PGI2作用最强;②对支气管、胃肠和子宫平滑肌的收缩作用;③增强腺体分泌作用;④趋化因子作用;⑤免疫症调节作用:PGE2低浓度时能抑制腺苷酸环化酶,使cAMP水平降低引起炎症;当高浓度时又可使cAMP水平升高,产生炎症抑制效应,例如可抑制嗜碱性粒细胞释放组胺、抑制Tc细胞的杀伤作用、抑制中性粒细胞趋化运动和溶酶体酶的释放等。
2.白三烯类脂氧化酶产物主要有LTB4、LTC4、OTD4和LTE4。其中LTB4是一种趋化因子。LTC4、OTD4和LTE4过去曾统称为过敏反应的慢反应物质(SRS-A);可使平滑肌收缩和粘液分泌,LTs收缩支气管的能力比组胺强1001000倍,持续时间也长,是引起支气管哮喘的主要原因。另外,LTs还可引起血压下降和心律失常。
(三)血小板激活因子
血小板激活因子(plateletactivaitngfactor,PAF)是一种磷脂类介质,主要由活化的肥大细胞和血小板释放,因有激活血小板的能力而命名。PAF可凝聚和活化血小板,使其释放活性胺类,引起毛细血管扩张和通透性增强;可激活中性粒细胞和嗜酸性粒细胞,是已知的最强的嗜酸性粒细胞趋化因子;注入皮肤可引起红肿和白细胞浸润;吸入时可引起急性的支气管收缩。PAF正常情况下以一种非活化形式储存于细胞中,细胞活化时释放出来,经磷脂酶D作用后失去活性。
(四)感觉神经肽
感觉神经肽是一组由感觉神经末梢释放的肽类物质,主要包括P物质(SP)、神经激肽(neurokinin)A、B(NKA,NKB)及降钙素基因相关肽(CGRP)等。
感觉神经肽具有明显的促炎作用,能通过轴突反射机制引起神经源性炎症和加重炎症反应。CGRP对人皮肤是一种很强的血管扩张剂,大剂量时引起血管壁通透性增加,形成荨麻疹。而SP除能引起血管扩张外,更是一种极强的致水肿因子。体外研究表明,SP具有收缩人支气管平滑肌的作用,NKA作用更强。SP还可刺激呼吸道粘膜分泌。在致炎因子作用下,从感觉神经末梢释放的SP,能使邻近的肥大细胞释放组胺,而组胺和激肽等炎症介质又可刺激感觉神经末梢释放SP。
二、其他炎症介质
(一)酶类介质
炎症细胞颗粒中存在多种酶类介质,细胞脱颗粒时释放出来,参与补体活化、血液凝固或激肽(kinin)的生成。
1.激肽原酶(kininogenase)为肥大细胞和嗜碱性粒细胞颗粒中含有的酶类之一,释出后可活化激肽生成系统,将血浆中的激肽原转变为激肽。激肽生成系统是血液中除补体外的第二大介质形成系统,其多种中间产物与补体系统互有联系,终产物主要是缓激肽(bradykinin)。
缓激肽是9个氨基酸残基组成的小分子肽,可引起平滑肌收缩和血管通透性增加,刺激神经末梢引起疼痛。缓激肽的作用缓而持久,特别是对支气管的子宫平滑肌的作用更加明显。
2.类胰蛋白酶(trytpase)是肥大细胞颗粒中的另一酶类,能裂解补体成分C3产生C3a,也可作用于多种凝血因子。C3a是一种过敏毒素,也是一种趋化因子。
(二)趋化性介质
趋化因子是能吸引吞噬细胞作定向运动的化学物质,是一类重要的炎症介质。其中有一部分是细胞因子(第五章已述);一部分是补体裂解产物(第三章已述);另外,PAF和LTB4等对中性粒细胞和嗜酸性粒细胞也有趋化作用。
(三)蛋白聚糖
肥大细胞和嗜碱性粒细胞的颗粒中富含一种蛋白质-多糖复合物,称为蛋白聚糖(proteoglycans)。蛋白聚糖形成了颗粒的结构基质,也作为半抗原和其他介质的结合部位,例如硫酸软骨素主要就是这些功能。还有一些具有不同调节活性的蛋白多糖,如肝素,它除了具有抗凝血活性外,还有调节类胰蛋白酶的活性;每个肥大细胞约含5pg的肝素。